
Study of OCaml programs’ memory behavior

Çagdas Bozman
ENSTA-ParisTech & OCamlPro

cagdas.bozman@ocamlpro.com

Thomas Gazagnaire
OCamlPro

thomas.gazagnaire@ocamlpro.com

Fabrice Le Fessant
INRIA & OCamlPro

fabrice.le fessant@inria.fr

Michel Mauny
ENSTA-ParisTech

michel.mauny@ensta.fr

Abstract

In this paper, we present a preliminary work
on new memory profiling tool and others, to
help us to understand memory behavior.

1 Introduction

OCaml is a strongly typed functional pro-
gramming language with automatic memory
management. Indeed, an incremental garbage
collector (GC) frees the programmer from
manually dealing with memory alloca-
tion/deallocation. Among the benefits of
automatic memory management, it ensures
that a large class of bugs can never happen,
such as dangling pointers, double frees, etc.
However, it also comes with some drawbacks:
some values might never be reclaimed by
the garbage collector, or collection might be
delayed too much. As a consequence, memory
pressure can increase, sometimes to have no
more available free memory, or the garbage
collector itself can consume a lot of resources
to decide which memory cells to free, and
both problems can lead to performance issues.

Thus, there is a need for tools to help de-
velopers profile the memory usage of their
OCaml programs, but almost nothing is cur-
rently available.

In Section 2, we present a work (in progress)
about regions-infer, a new tool based on

region inference, which computes lifetime of
values in a program.

In Section 3, we show alloc-prof, a tool
that allows programmers to profile memory
allocation and see hotspots in their programs.

Then, in Section 4, we describe
OCamlmemprof which allows to under-
stand the memory behavior by dumping
memory information in a file.

Finally, in Section 5, we end up with a sum-
mary.

2 Region Inference

region-infer provides a simplified analy-
sis of the lifetime of values in a program,
based on region inference. Region inference
was originally introduced by Tofte and Talpin
[5, 6] for region based memory management,
which is a compromise between manual and
automatic memory management. With re-
gion based memory management, every value
is assigned to a region, which is a collec-
tion of allocated blocks that will all be re-
claimed together when execution leaves their
region. Region inference is a static analysis
technique that relieves the programmer from
manually associating regions to objects. Tofte
and Birkedal [4] explained that in some cases,
the compiler is able to prove the absence of
memory leaks or detect some kinds of mem-
ory leaks.

To verify this hypothesis, we have modi-

1



fied the OCaml code generator to infer regions
and annotates values with them. These anno-
tations help to understand which values are
interfering (i.e. they are stored in the same
region), and for how long. We then built a
plugin in TypeRex [2] to display these regions
in the source code, so that developers can eas-
ily see links and interactions between values
in a program.

3 Memory allocator

alloc-prof allows developers to discover al-
location hotspots in their programs. It is in-
spired from an email posted in the OCaml
mailing-list, presenting the poor man’s pro-
filer [1, 7]. It is a modified OCaml runtime
that saves in a journal the stack of the pro-
gram every time a given amount of memory
is allocated. The journals can then be dis-
played inside a simple web page written in
js of ocaml [3], in order to display and explore
the call graph (Figure 1), weighted by the
number of allocation events.

4 OCamlmemprof

mem-prof allows developers to understand
how the memory of an OCaml application is
used at any given time during the application
execution. Two modes are available: (1) con-
tinuous profiling, and (2) snapshot profiling.

4.1 Continuous Profiling

In this mode, continuous profiling, the pro-
gram is instrumented to store in each block
some information about its type and its allo-
cation point. During the execution, a jour-
nal stores allocation events and garbage col-
lection events. The journal can then be read
to display graphs showing the content of the
heap at any given garbage collection event,
as amounts of types or amounts of memory
allocated by each function or module.

Figure 1: Example of alloc-prof call graph

4.2 Snapshot Profiling

In this second mode, snapshot profiling, the
program is not instrumented. Instead, a func-
tion is provided that dumps the content of
memory in a file. This file is then analyzed to
approximate the types of the memory blocks,
and show how much memory is retained by
every global value.

5 Conclusion

Using these tools, it is now possible to have a
better idea of the memory behavior of OCaml
programs. Once the profiling done, we need
to understand results and then try to im-
prove the user code by using some optimiza-
tion techniques.

To summarize, all of the three tools mod-
ify the OCaml distribution. mem-prof and
alloc-prof modify the OCaml runtime to
dump allocation and deallocation events in a
journal. region-infer modifies the OCaml
compiler to compute regions after type infer-
ence, so that region information is available
just after compilation.

We hope that these tools will help develop-
ers spot memory problems in their programs.
Advanced users can use this information to
improve their programs by reducing alloca-

2



tions in their programs’ critical paths. For
less advanced users, we plan to develop other
tools that can provide advice on how to re-
duce the memory cost of a particular function
or type.

References

[1] Poor man’s profiler. http:

//poormansprofiler.org.

[2] OCamlPro. Typerex, a development en-
vironment for ocaml. http://typerex.

org/.

[3] Ocsigen. Js of ocaml is a compiler from
ocaml bytecode programs to javascrip.
http://ocsigen.org/js_of_ocaml/

manual/overview.

[4] M. Tofte and L. Birkedal. A region in-
ference algorithm. ACM Trans. Program.
Lang. Syst., 20(4):724–767, July 1998.

[5] M. Tofte and J.-P. Talpin. Implementa-
tion of the typed call-by-value &-calculus
using a stack of regions. In Proceedings of
the 21st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming lan-
guages, POPL ’94, pages 188–201, New
York, NY, USA, 1994. ACM.

[6] M. Tofte and J.-P. Talpin. Region-
based memory management. Inf. Com-
put., 132:109–176, February 1997.

[7] ygrek. Poor man’s allocation profiler.
http://ygrek.org.ua/p/code/pmpa.

3

http://poormansprofiler.org
http://poormansprofiler.org
http://typerex.org/
http://typerex.org/
http://ocsigen.org/js_of_ocaml/manual/overview
http://ocsigen.org/js_of_ocaml/manual/overview
http://ygrek.org.ua/p/code/pmpa

	Introduction
	Region Inference
	Memory allocator
	OCamlmemprof
	Continuous Profiling
	Snapshot Profiling

	Conclusion

